Novel Methods For Splicing Topoi Via Semantic Fibering Techniques

Adam Catto

Stony Brook University Department of Computer Science – URECA Showcase 24 April 2019

Introduction

- \bullet Algorithm design \cap category theory
- Goal: construct $f: \mathcal{E}_1 \times \mathcal{E}_2 \to \mathcal{E}$
- Previously: splicing logics (fibering, fusion), stability of topos structure under certain operations (slice theorem, lex comonad theorem, lex idempotent monad thorem, three topos theorems in one) [1] [3] [4]

Background: Logic

- "Logic" methods for [deductive] reasoning
- "A Logic" system consisting of symbols,
 formal grammar for WFFs, formal
 evaluation rules

	Syntactic	Semantic
Eval Description	$\{ \text{ sentence } \}^* o \text{ sentence }$	$\{ \text{ sentence } \}^* o \text{ truth value}$
Example	$\frac{\{X \vdash P \ , \ X \vdash Q\}}{X \vdash P \land Q} \frac{X \vdash P}{X \vdash P \lor Q}$	$\{P \land Q, Q, \neg P\} \mapsto F$
Example System	Sequent Calculus	Kripke semantics

Category Theory: Technical

- Category: $\mathbf{C} = \langle Ob(C), Hom(C), \circ \rangle$ • $objects\ A_1, \cdots, A_n \in Ob(C);$ • $morphisms\ A_1 \xrightarrow{f_k} A_2 \in Hom(C);$ • $id_A \in Hom(A, A)$ for each A;• : $A_1 \xrightarrow{f_k} A_2 \times A_2 \xrightarrow{f_k} A_3 \to A_1 \xrightarrow{f_k} A_3$ [\circ is associative]
- Further fundamental concepts: 7 dogmas [2] categories, functors, naturality, limits, adjoints, colimits, comma categories; also epis, monos, pullbacks, subobjects, · · ·

Topos Theory: Technical

- [Elementary] Topos \mathcal{E} : category with finite limits + power objects (finite limits + cartesian closed + subobject classifier)
- Internal logic is higher-order intuitionistic logic
- Internal language is MB type theory

Category Theory: Functionality

- Metamath: abstracts structure $\xrightarrow{\text{yields}}$ analogies
- Compositionality: barebones for associatively composing ("gluing") maps
- Extensibility: can add structural conditions, instantiate, "stack" / "layer" categories → higher categories (foundation for higher-order mereotopology)
- Internalization: can formulate mathematical objects & systems of logic within rich-enough categories (e.g. groups \hookrightarrow finite product \mathbf{C})

Topos Theory: Functionality

- \mathcal{\
- Has nice properties similar to **Set**
- Constructive mathematics

Splicing Logics

• Algebraic Fibering: coproduct [in e.g. the category of Hilbert calculi] of logics' signatures (unconstrained fibering); coproduct of logics' signatures followed by coequalizer (constrained fibering)

Mitchell-Benabou Type Theory

Internal Language of \mathcal{E} ; $Ob(\mathcal{E}) \leadsto Sets$

- types $-A \sim \text{objects}$
- vars $-v:A \sim id_A$
- terms $-t(x_i:X_i):B\sim\prod_i(X_i)\to B$
- formulas $\varphi(x)$ ~ terms of type Ω
- connectives $\sim \Omega$'s internal Heyting algebra structure
- quantifiers \sim internal completeness of Ω
- truth of $\varphi \sim$ arrow interpreting P factors through $1 \xrightarrow{\text{true}} \Omega$

Interpreted via Kripke-Joyal semantics

Kripke-Joyal Semantics

- $U \vDash \varphi(\alpha) \land \psi(\alpha)$ iff $U \vDash \varphi(\alpha)$, $U \vDash \psi(\alpha)$
- $U \vDash \varphi(a) \lor \psi(a)i \text{ iff } \exists g: U_1 \to U, h: U_2 \to U$ s.t. $\langle g_1, g_2 \rangle : U1 \times U_2 \xrightarrow{epi} U, U_1 \vDash$ $\varphi(a \circ g_1), U_2 \vDash \psi(a \circ g_2)$
- $U \vDash \varphi(a) \Longrightarrow \psi(a) \text{ iff } \forall g : V \to U[V \vDash \varphi(a \circ g)] \text{ implies } V \vDash \psi(a \circ g)$
- $U \models \neg \varphi(a)$ iff $\forall g : V \to U[V \models \varphi(a \circ g)]$ implies $V \simeq 0$
- $U \vDash \exists y [\varphi(a, y)]$ iff $\exists g : V \xrightarrow{epi}, h : V \to Y [V \vDash \varphi(a \circ g, h)]$
- $U \models \forall y [\varphi(a, y)]$ iff
- $\forall g: V \xrightarrow{epi} U, h: V \to Y[V \vDash \varphi(a \circ g, h)]$

Algorithm Sketch

 $\mathcal{E}_1 \to MB(\mathcal{E}_1) \to KJ(MB(\mathcal{E}_1))$

 $\Longrightarrow \mathcal{E}_{\text{free}}(\text{algfib}(KJ(MB(\mathcal{E}_1)),KJ(MB(\mathcal{E}_2))) \text{ (in the sense of [1])}$

 $\mathcal{E}_2 \to MB(\mathcal{E}_2) \to KJ(MB(\mathcal{E}_2))$

Example

- \mathcal{E}_1 = category of simplicial sets; $\mathcal{E}_2 = V_{\omega+1} \times V_{\omega+1}$
- ullet Then, resulting ${\mathcal E}$ is a higher-order cellular automaton.

Future Work

- Extend to internal logics/languages of categories in general, & higher categories
- Explore applications to semantic web & data mining (particularly in worldview formalisms)

References

- [1] (2008) Carnielli, W. et al. "Analysis and Synthesis of Logics: How to Cut and Paste Reasoning Systems". Springer.
- [2] (1991) Joseph A. Goguen. "A Categorical Manifesto". Mathematical Structures in Computer Science. 49–67.
- [3] https://ncatlab.org/toddtrimble/published/Three+topos+theorems+in+one
- [4] (2003) Johnstone, P.T. "Sketches of an Elephant: A Topos Theory Compendium". Clarendron Press.