Hierarchical Model Transfer Methods for Ensemble Learning with Large
Amounts of Missing Data

Adam Catto
Capstone Project, M.S. Data Science, CUNY Graduate Center
Advisor: Professor Anita Raja

Fall 2021

1 Introduction

Clinical data are typically very high-dimensional, yet often quite sparse; any given feature may only be available
for a relatively small subset of the population. When building prediction models on these data — for instance, in
the context of diagnosis, risk stratification, or survival analysis — we must figure out how to handle the missing
data. Determining optimal strategies for handling missing data is facilitated by understanding the missingness
patterns in the dataset. A popular framework for characterizing missing values is the Rubin’s trichotomy [LR19] of
“Missing Completely at Random (MCAR)”, “Missing at Random (MAR)”, and “Missing not at Random (MNAR)”.

One method for handling missing values is to simply omit (delete) certain sets of data. This can be deletion
of samples with missing values (list-wise deletion), deletion of certain features with large amounts of missingness
(test-wise deletion), or a combination of the two. However, list-wise deletion of data that is not MCAR can in-
troduce bias — in this case, the post-deletion sample will be different from (and hence not representative of) the
original sample; if the original sample approximated the population’s statistics, then the post-deletion sample will
not approximate the population’s statistics as well as the original sample would have, and in the context of machine
learning we would see lower performance on the testing data (i.e. higher bias). In cases where data are MCAR,
this may not introduce bias, but it reduces the statistical power. In high-dimensional datasets where many samples
are missing at least one value, this can lead to drastic decreases in performance. Another deletion strategy is
pairwise deletion, which deletes samples only if they are missing values in features that are used in some analysis;
if the analysis does not use those features, it is included. This can circumvent some of the issues brought about by
list-wise deletion, but it creates different sample sizes across analyses.

Another common strategy with data that is MAR or MCAR is to impute the missing values, i.e. use some
mechanism for estimating what a given missing value ought to be, based on either prior knowledge, statistical
properties of the feature in question, statistical properties of the relationship between the feature and the other
observed features, or some combination thereof. Imputation may be thought of as prediction of the values of certain
samples’ features, an intermediate step in the final downstream prediction tasks such as classification or regression,
or in unsupervised tasks such as clustering. Many sophisticated imputation methods exist, but they run into po-
tential issues of bias, similarly to list-wise deletion. When large amounts of values are missing in high-dimensional
data, this can significantly corrupt the distribution. For certain tasks where each of the individual features is very
important to the task, such as gene expression profiling , imputing the missing values is unavoidable, but for others
where certain features are not absolutely critical, imputation may not be the ideal way of handling missing data.

These problems of distribution corruption and reduction in statistical power posed by high-dimensional, high-
missingness datasets are pronounced in clinical / biomedical machine learning tasks. A distribution that is less
representative of the population can lead to systematic misclassifications, perhaps skewed towards one class or
another, thus negatively affecting prediction metrics. Additionally, utilizing less samples during training can lead to
the model’s inability to identify correct patterns, thus also misrepresenting the underlying distribution. Given these
problems, a major goal for prediction with missing data is overcoming the issues of adding bias posed by imputation
on one hand, and the dramatic reduction in statistical power posed by deletion on the other hand. For this purpose,
I propose a framework for dealing with missing data that does not require any imputation, and learns from the joint



distribution of each combination of features, aggregating what is learnt over each combination. This avoids (1) the
introduction of bias from imputation on any missingness pattern, (2) the introduction of bias from list-wise deletion
on MNAR data, and (3) the reduction in statistical power from list-wise deletion on any missingness pattern. In
machine learning parlance, I develop a transfer learning algorithm that is essentially a meta-ensemble; it builds a
directed acyclic graph (DAG) — that is equivalent to a partially ordered set with subset ordering — where the nodes
are each combination of features and the directed arrows are from a node n to each node which has all the features
present at n plus one more feature, then trains an ensemble on every combination of features, masking out the
features not in the respective combination and deleting the samples at each node which are missing values at any
of the relevant features. This is essentially pairwise deletion at each node. Then at each node’s trained ensemble,
classifiers are sampled from its ancestors’ ensembles, thus “inheriting” the statistical power learned on larger sample
sizes with less features.

This thesis is structured as follows: in the Background section, I review the details of some methods for han-
dling missing data and machine learning ensemble methods. In the Methods section, I provide a detailed account
of the proposed algorithm. In the Experimental Design section, I describe the experiments run to test the validity
of my method on synthetic and real-world high-missingness biomedical data. In the Results section, I report the
performance of the method in comparison with other state-of-the-art ensemble methods and methods for handling
missing data. In the Discussion section, I interpret and discuss the implications of the results, from both a statistical
perspective and a clinical decision-making perspective. In the Works in Progress and Future Directions section, I
outline a roadmap of next steps.

2 Background

2.1 Data Imputation

A straightforward method of imputing missing values is to use column-wise mean imputation, or other central-
tendency statistics such as median. In this case, the mean of the non-missing values of each column in the dataset
is calculated, and any missing value in a column c is imputed to the mean of ¢. However, this approach can severely
perturb the distribution of the data, for instance by decreasing variance. Furthermore, if a feature can be modeled
as a function of other variables, this dependence is washed away and the conditional / joint distributions become
corrupted, in addition to an increase in estimation error as compared to, say, parametric estimation based on the
values of other features.

Due to this issue with mean imputation, we may want to approach the problem as a prediction problem using
other features. Some options for imputing continuous features are regression and k-nearest neighbors: one can
train a (single-variable, multivariate) regression model with the column-to-impute as the target column, and the
samples which have the feature present as the training set; the model can be used to predict the column values for
those samples which are missing it. For categorical variables, one may consider a similarly simple classifier, such
as logistic regression. One particularly useful model for imputing missing tabular data is the MissForest algorithm
[SB12], which can simultaneously impute continuous and categorical variables. MissForest tends to outperform
k-nearest neighbors and regression imputation models on synthetic imputation tasks (where ground-truth is known
and therefore mean error can be calculated), but similarly to other methods, it still has the potential to change the
distribution of the data, especially if the other features are not strongly predictive of that feature. If large amounts
of samples are missing a given feature, imputing them will cause a significant portion of the data to be synthetic,
which may introduce its own set of problems.

2.2 Data Omission

Given the potential drawbacks of imputing missing values under certain circumstances, a natural alternative is
to simply delete portions of the data with missing values. This can be done by removing samples with missing
values (list-wise deletion), features with missing values (test-wise deletion), or a combination of the two (pairwise
deletion) If there are no systematic patterns in the missingness (i.e. the data are missing at least at random), then
removing samples which have missing values should not meaningfully change the distribution. However, this process
of list-wise deletion can significantly reduce the statistical power of the model if enough samples are missing or if
the original dataset is relatively small — in medical datasets and other high-dimensional datasets, samples which do
not have any missing values are rare. In these cases, it may make more sense to remove certain features that have
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Figure 1: DAG of Ensembles: Illustration

large amounts of missingness. Likewise, if there are only certain features which are necessary for an analysis, it is
perhaps a good idea to use pairwise deletion.

3 Methods

In order to mitigate bias brought about by imputation and reduction in statistical power brought about by deletion
methods, I propose a method for learning from joint distributions of each combination of features, starting from
single-variable distributions all the way up to the joint distribution of all features in the dataset. It is important to
note that in the context of medical testing, each test may result in multiple features, thus a sample having missing
values in one of the features indicates the rest of the features will be missing at that sample as well. As such,
we modify the previous statement from “joint distributions of combinations of features” to “joint distributions of
combinations of tests”, where all the features associated with a test are included wherever the test is included. The
method is sketched as follows. Suppose we are given a set of base features .# and a set of tests enumerated as
7 =1{1,2,--- ,n}. First, construct a DAG with nodes representing combinations of tests, and edges representing
“immediate inclusion”, i.e. given a node v with tests # A1 A2 A --- Ak, draw an arrow from v to every node v*
such that v* = v At* for any t € 7 and t € v. A sample illustration on 4 tests is provided in Figure 1.

Each node contains a unique set of features. At each node, the features not present at that node are masked out
and pairwise deletion is performed: all samples which have at least one missing value in the relevant feature set are
removed from the training set at that node. At each node, an ensemble classifier is learned on the unmasked data
that passed the pairwise deletion filter. The classifiers learned at each node are stored in a node attribute denoted
“classifiers”, and the entire model is stored in a node attribute denoted “model”. This yields a stratified, partially-
ordered set of ensembles (henceforth denoted “stratified meta-ensemble”), with n + 1 levels for n tests (n levels for
tests and one level for base features). The number of classifiers learned at each node is inversely proportional to the
number of valid training samples at that node: in other words, given a training set of kg samples with each of the
base features and 73 classifiers learned at the base feature node, for a given node v with k, samples, the ensemble
1y, will contain ’g—” classifiers (rounded to the nearest whole number). More details on the algorithms for generating
the inheritance graph and building the ensembles can be found in Algorithms 1 and 2.

The benefit of this approach is that on one hand, the model at any given node has been learnt using only the
information that is fully available using that node’s feature set, thus not perturbing the joint distribution as might
occur with imputation, and on the other hand a model is learnt at each node, for each possible joint distribution,
thus circumventing the statistical power issue posed by list-wise and pairwise deletion — this approach represents an



Algorithm 1 Build Inheritance DAG

procedure BUILDINHERITANCEGRAPH(tests, base_features, data)
test_combinations < powerset(tests)
levels < [[x for x in test_combinations if len(x) == L] for L in len(tests)]
poset < DirectedGraph()
poset.addNode(level=0, features=base_features, estimators=list(), predictions=dict(),
errors=list(), ground_truth=dict())
for i, level in enumerate(levels) do
for j, testCombination in level do
currentFeatures = list()
currentFeatures += base_features
for t in testCombination do
currentFeatures += t.getTestFeatures()
end for
currentLevel =1 + 1
currentNode = Node(level=currentLevel, features=currentFeatures, estimators=list(),
predictions=dict(), errors=list(), ground_truth=dict())
poset.addNode(currentNode)
nodesOneLevelUp = [node for node in poset.nodes if node.level == i]
for node in nodesOneLevelUp do
if all node.features in currentNode.features then
poset.addEdge(node, currentNode)
end if
end for
end for
end for
return poset
end procedure

Algorithm 2 Build Stratified Meta-Ensemble

procedure BUILDSTRATIFIED METAENSEMBLE (trainDataset, inheritanceGraph, ensembleType, nEstimBase)
totalSamples <— len(trainDataset)
for node in inheritanceGraph.nodes do

samples « [sample for sample in trainDataset if each feature in node.features is present]
len(samples) )

model « initialize ensembleType(n_estim = round ({5 isampies

model.fit(trainDataset)
inheritanceGraph.nodes[node].estimators <— model.estimators
inheritanceGraph.nodes[node].model - model
end for
return inheritanceGraph
end procedure




ordering of all possible pairwise deletions. The real power of this approach, however, is not just learning on all pos-
sible pairwise deletions and stratifying predictions via this ordering, but from actually propagating the information
learned from each pairwise deletion to each of its “descendants” on the graph, i.e. each node “inherits” information
from its ancestors.

Once this graph is constructed and the models are trained at each node, it is time to propagate what has been
learned from smaller feature sets / larger sample sets to larger feature sets / smaller sample sets. There are two
primary methods I've designed for this: inheriting all estimators from all ancestors, and randomly sampling a
certain number of estimators from a node’s ancestors — in this paper, given n estimators at a given node, randomly
sample n estimators total from a compiled set of all estimators from all ancestors.

4 Experimental Design

To test the validity of my method, I use both synthetic and real-world biomedical datasets with large amounts of
missingness. I compare the predictive performance of off-the-shelf, state-of-the-art classifiers commonly used on
these kinds of data with my method. Specifically, I use the real-world Wisconsin Breast Cancer Prognosis dataset
[WSM94] with a synthetic missingness pattern applied to it, in addition to the NuMom2b dataset [Haa+15], an
observational study of nulliparous mothers-to-be which I used to predict which patients would go on to develop
hypertensive disorders.

4.1 Synthetic Missingness

The first dataset that I used was the Wisconsin Breast Cancer Prognosis dataset. This dataset contains 194 samples
with no missing values over 34 features. The features are characterized over 10 different sorts: (a) radius (mean of
distances from center to points on the perimeter) (b) texture (standard deviation of gray-scale values) (c) perimeter
(d) area ((e) smoothness (local variation in radius lengths) (f) compactness (perimeter2 / area - 1.0) (g) concavity
(severity of concave portions of the contour) (h) concave points (number of concave portions of the contour) (i)
symmetry and (j) fractal dimension (”coastline approximation” - 1), each with three attributes: (1) mean value,
(2) standard error, (3) worst value. Additionally, we have features for recurrence time, tumor size and lymph node
status. This is a binary classification problem: there are two labels to predict.

To proceed with the experiment, I selected a set of “tests”, i.e. groups of features to partly mask out at various
rates, and a set of base features to remain fully-observed. I chose smoothness, compactness, concavity, symmetry,
tumor size, and lymph node status as the “tests”, and all the others as the base features. I used a 70/30 train/test
split, first training an XGBoost classifier [CG16] with 100 boosting rounds on the unmasked data, to obtain part
of a baseline for comparison. I then randomly masked 10% of the smoothness values, 20% of the compactness,
concavity, and tumor size values, and 30% of the symmetry values, and 50% of the lymph node status values. Note
that the mean, standard error, and worst values for each test type were masked simultaneously. Three baseline
models were tested on the synthetic missingness dataset for comparison: an XGBoost model with no imputation,
an XGBoost model with K-nearest neighbor imputation, and an XGBoost model with MICE imputation [VG11;
Buc60]. Next, the meta-ensemble I've proposed was trained and tested using three inheritance mechanisms: full
inheritance, no inheritance (just node assignment), and at each node with n boosting rounds a random sampling of
n boosted trees from the entire set of ancestors (each model therefore has 2n estimators respectively). There were
a total of 6 tests, and correspondingly 2% = 64 gradient boosting classifiers were trained. The resulting inheritance
DAG for the synthetic dataset can be found at the top of Figure 2.

Given the small size of the dataset, to evaluate my method I tracked the sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV), geometric mean between sensitivity and specificity, and area
under the receiver-operator characteristic curve (AUROC) over 50 trials with different train/test splits. I compared
the full-inheritance method to the off-the-shelf XGBoost method with no imputation. This dataset is quite heavily
imbalanced: 148 negative versus 46 positive samples. The train/test splits reflected this: the test sets had similar
imbalances.



4.2 Real-World Dataset: NuMom?2b

Next, I tested my method on the NuMom2b dataset [Haa+15]. This data comes from a large multi-site observational
study of nulliparous pregnant women st, which aimed to evaluate numerous potentially interrelated mechanisms
leading to adverse pregnancy outcomes. The study collected information from over 10,000 participants over 4
visits, spanning data on clinical measurements, blood/urine tests, questionnaires, ultrasound exams, and more. For
this evaluation, I used eventual development of hypertensive condition (yes/no) as the label to predict. The base
features were the L1 features preprocessed according to [Gor+21], and the tests selected were each of the placental
analytes tested at the second visit, for a total of 9 tests. Again, this dataset is highly imbalanced: 2760 positive
versus 7279 negative. This time, due to an increase in dataset size, instead of running 50 trials, each of the 6
methods (my proposed method with full inheritance, no inheritance, and random sampling inheritance; XGBoost
with no imputation, KNN imputation, and MICE imputation) listed in the previous sub-section were evaluated
according to the 6 metrics also listed in the previous section. The performance at each node (in terms of mean
classification error per node) is visualized for each of the 6 models as well. Additionally, the ROC, precision-recall,
and sensitivity-specificity curves are plotted.

5 Results

5.1 Synthetic Missingness Dataset

On the synthetic missingness dataset, averaged over 50 trials, the meta-ensemble algorithm I proposed tended
to outperform the off-the-shelf XGBoost without imputation, on sensitivity, negative predictive value, AUROC,
and geometric mean between sensitivity and specificity. The difference was most pronounced on sensitivity; when
comparing the average of each metric between XGBoost without imputation and the meta-ensemble with full
inheritance, we observed an average sensitivity of 35.2% for XGBoost without imputation, vs 53.7% for the meta-
ensemble with full inheritance. See Figure 3 for a visualization of a comparison between the two algorithms over
50 trials (different test sets to test for variability in performance as a result of differences in small test sets).

Table 1: Breast Cancer Prognosis Dataset: Classification Comparison: Average Over 50 Trials

Breast Cancer Prognosis Dataset: Classification Comparison: Average Over 50 Trials
Model Sensitivity | Specificity | PPV | NPV | G-Mean | AUROC
XGBoost (no imputation) 35.2% 88.9% 48.7% | 82.1% | 54.2% 68.4%
Meta-Ensemble Full Inheritance 53.7% 78.2% 43.0% | 85.0% | 64.1% 70.0%
Table 2: Breast Cancer Prognosis Dataset: Classifier Types’ Performances
Breast Cancer Prognosis Dataset: Classifier Types’ Performances
Model Sensitivity | Specificity | PPV | NPV | G-Mean | AUROC
XGBoost (no imputation) 15% 98%. 67% | 80% | 38.8% 81%
XGBoost (KNN imputation) 23% 98% % | 81%. | 47.5% 83.9%
XGBoost (MICE imputation) 23% 96%. 60% | 81%. | 47.0% 80.2%
Meta-Ensemble Full Inheritance 54% 96% 8% | 8% | T1.7% 86.5%
Meta-Ensemble Sample n estimators total 38% 91% 56% | 84% 59.2% 77.3%
Meta-Ensemble No Inheritance 44% 84% 57% | 90% 64.6% 75.3%

5.2 NuMom2b

I have compiled results for the various ensembles evaluated on the NuMom2b dataset. In addition to tabulating
the results for the different classifiers, I've also visualized their performances at each of the nodes with placental
analyte combinations seen in the testing set. The tabulated results can be seen in Table 3, and the node-wise results
can be seen in Figures 4-9. The ROC, Precision-Recall, and Sensitivity-Specificity curves can be seen in Figures
10-12. The stratified meta-ensemble techniques still outperformed the XGBoost models, but the differences were
less pronounced on this dataset, because it is a more difficult classification problem overall. Although the gap in
performance was not as large, the meta-ensemble methods outperformed the XGBoost methods on every metric.
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Figure 2: (Top) Synthetic Missingness Inheritance DAG: 64 Ensembles

(Bottom)NuMom?2b Inheritance DAG: 512 Ensembles
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Table 3: NuMom2b Dataset: Classifier Types’ Performances

NuMom?2b Dataset: Classifier Types’ Performances

Model Sensitivity | Specificity | PPV | NPV | G-Mean | AUROC
XGBoost (no imputation) 25% 92% 54% | TT% 48.4% 66.9%
XGBoost (KNN imputation) 25% 92% 54% | 7% | 48.1% 65.9%
XGBoost (MICE imputation) 26% 92% 5% | TT% 48.9% 66.4%
Meta-Ensemble Full Inheritance 31% 90% 53% | 8% 52.6% 67.8%
Meta-Ensemble Sample n estimators total 26% 93% 59% | 78% 49.1% 68.9%
Meta-Ensemble No Inheritance 21% 95% 61% | 7% 45.0% 69.0%

6 Discussion

On the NuMom?2b dataset, the stratified meta-ensemble methods I've proposed tend to outperform the XGBoost
methods on every metric; perhaps most notably, the full-inheritance method outperforms the other methods on
sensitivity on imbalanced datasets, with acceptable tradeoff in specificity such that my method’s g-mean is also
higher than the g-mean of any other evaluated method. The inheritance-via-random-sampling method also had
the highest PPV of any evaluated method. The three meta-ensemble methods also outperformed the XGBoost
methods on AUROC (though this is less important than the other metrics given the severe class imbalance). On
the synthetic missingness dataset, the stratified full-inheritance meta-ensemble method still outperforms XGBoost
(without imputation) most dramatically on sensitivity and g-mean, in addition to NPV and similar AUROC, getting
outperformed in specificity and PPV.

One hypothesized takeaway is that propagating learnt information from each joint distribution can lead to in-
creased performance, though it remains to be investigated more systematically. Perhaps the key takeaway here,
though, is that the meta-ensembles appear to have different strengths and weaknesses, and correspondingly different
clinical applications; there are certain clinical cases in which you’d want to optimize for sensitivity or specificity,
or PPV or NPV, and so choice of machine learning technique depends on the problem at hand. Sensitivity is a
problem for learning on imbalanced datasets, and when not much data is available it can be costly to undersample.
As a result, building a model that non-trivially improves sensitivity on imbalanced datasets can potentially open
up new clinical application areas for prediction modeling.

7 Works In Progress and Future Directions

Building on the momentum of the discussion section, a line of research I am following up with is an investigation
of why the sensitivity increases so much when the inheritance mechanism is applied. Relatedly, it is to be seen
whether these changes in performance (increase in sensitivity and g-mean especially) remain when working with
balanced datasets. There are two primary ways to investigate this: (1) an empirical, data-driven way, where the
individual nodes are investigated; (2) a probability / statistical learning theory approach, where expectations on
the predictions are calculated.

Another important thread is that of computational efficiency. While I only used 9 tests on the NuMom2b dataset
and 6 tests on the Wisconsin Breast Cancer dataset, scaling up to larger and larger amounts of tests is prohibitively
difficult considering the current approach of training 2™ ensembles for n tests. For instance, if I had also included
the placental analytes at visit 1, the number of models to train would jump from 2° to 2!8; it took 403 seconds
to train the entire set of 2% ensembles, so we could expect that it would take at least 403 x 2° seconds (two and a
half days) to train this ensemble, and correspondingly larger amount of memory needed for the models. Given the
high dimensionality of medical datasets, a more pragmatic training methodology is necessary. One such approach
is to only build nodes for those combinations we have seen; when using the meta-ensemble to make predictions on
a test-set, we can assign test-set nodes to their closest ancestor and proceed in the usual way. Another approach is
to only build nodes for those combinations which have significantly more samples than their children. We can also
consider designing a policy for deciding which nodes to build, introducing a certain amount of exploration away
from the policy as well.

Given issues related to undersampling and list-wise deletion in general, it might make sense to try oversampling.
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However, state-of-the-art oversampling techniques such as SMOTE or ADASYN [Cha+02; He+08] require missing
values to be imputed. Since we want to avoid imputation, another next step is to design a missingness-aware variant
of, say, SMOTE, to generate synthetic samples that also contain missing values.

Because the different inheritance mechanisms seem to have different strengths and weaknesses, in order to get
the best predictions out of them, we may consider combining them with yet another meta-ensemble technique, such
as stacked generalization [Wol92]; we may even consider including the XGBoost methods in here, as they tend to
perform better on specificity, at least on the Wisconsin dataset. We may also consider testing with different types
of estimators in the ensembles, as opposed to gradient boosting only. Another direction that appears fruitful is
extending the model to do multi-output learning: in this way, we can predict multiple potential outcomes at once,
utilizing what we’ve learned from the prediction of one outcome for the next.

Finally, this entire project was motivated in large part by a further goal of optimizing medical test-selection.
Test-selection is a sequential decision-making problem, which can be formulated as optimizing for uncertainty re-
duction in some target variables of interest. The initial ideas for this meta-ensemble technique were spawned out
of an investigation of screening tests for preeclampsia, namely utilizing the first-trimester uterine artery Doppler
ultrasound exam as a screening test, and determining who might benefit most from this test. Only a small sub-
population actually received this test, and when we tried training machine learning models on only the samples
who received this test, the model performed worse than a model trained on the whole population but without
including the ultrasound. In this case, some patients who may have otherwise gotten a reduction in uncertainty of
development of preeclampsia from the ultrasound may have been determined to have an increase in uncertainty as
a result. This led to the idea of retaining the information learnt from the larger sample set with less features and
propagating it to the sub-populations who received the test, which is more natural in a sequential decision-making
context: there are certain features already observed previously, and knowledge is built on top of that. One reason
for using ensembles in this context especially is that one can define a notion of confidence interval (or simplex) with
ensembles: order the class probability predictions of all the estimators for a given sample and take some central
interval /simplex (e.g. the 25th percentile to the 75th percentile) of values as the confidence simplex. Reduction in
uncertainty can be seen as a combination of (1) moving the probability prediction closer to one class or another (re-
duction in data uncertainty), (2) shrinking the size of the confidence simplex (reduction in knowledge uncertainty),
and (3) shrinking the degree to which the confidence simplex overlaps with multiple classes (combination of data
uncertainty and knowledge uncertainty) [MMG19]. See Figure 13 for an illustration of what such confidence inter-
vals might look like (this figure is taken from a preliminary experiment with confidence intervals on the NuMom2b
dataset).
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Figure 13: Meta-Ensemble, stratification with full inheritance node-wise metrics: number of samples and mean error
per node with at least one sample. Levels (corresponding to number of tests) along with text schema are provided by
the nodes on the right-hand side. Bright-green dots are correct predictions, bright-red dots are incorrect predictions;
green and red bars are confidence intervals (25th-75th percentile of ordered predictions over all estimators) of correct
and incorrect predictions, respectively.
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